Course Type	Course Code	Name of the Course	L	Т	P	Credits
DE	NCHD506	Carbon Capture and Clean Energy	3	0	0	3

Course Objective

- To acquire underlying principles of science and engineering of CO₂ capture from vents and exhausts of various processes
- To provide a blueprint for minimizing carbon footprint through the usage of technology e.g. power cycles, heat recovery, and heat utilization

Learning Outcomes

• Students will have enough knowledge about CCUS and various climate change mitigation technologies.

Unit No.	Description of Lectures	Contact Hours	Learning Outcome	
1	Introduction to fossil fuels & carbon emission: World energy scenario, fossil fuel and emissions, importance of power plants and other processes of carbon emissions e.g., lime and cement manufacture, natural and synthesis gas processing plants, etc.	8	Basic introduction to fossil fuels and carbon emission scenario from different industries	
2	Combustion and gasification technologies: Post- combustion treatment technologies, supercritical processes, fluidized beds, IGCC, oxyfuel gasification and combustion and clean-up processes, syngas from different energy	10	Students will know the application combustion are	
	sources, e.g. fossil fuels, biomass, gas reforming, partial oxidation, and other routes to syngas/hydrogen production, routes to alternative liquid fuels – synthetic and bio-diesel, DME, GTL, polygeneration.		gasification technology in the context of CCUS	
3	Carbon capture: Technology options for CO ₂ capture, advantages and disadvantages of major CO ₂ capture technologies, global issues and trends.	8	Students will be familiar with various technology options for carbon capture options	
4	Carbon storage & sequestration: Storage options, technologies and field projects, carbon sequestration methods	8	Students will know the CO ₂ storage and sequestration methods	
5	Highly efficient power generation : Utilization and recovery of low-grade and waste heat, combined heat and power cycle, the emerging technologies.	8	Students will be acquainted with various high efficient power generation technologies in the context of CCS	
	Total	42		

Textbooks:

1. Rackley, S. A. (2017). Cabon Capture and Storage. 2nd Ed. Butterworth-Heinemann.

Reference Books:

- 1. Herzog, H.J. (2018) Carbon Capture, MIT Press.
- 2. Kohl, A. L.; Nielsen, R. B. (1997) Gas Purification, 5th Ed., Gulf Publishing.
- 3. Higman, C. and Buggt, M. (2008) Gasification, 2nd ed., Gulf Professional Publishing.
- 4. Liu, K. Song, C. Subramani, V. (2010) Hydrogen and Syngas Production and Purification Technologies, AIChE, Wiley